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Abstract

It is well known that the non-broadcasting theorem proved by Barnum et al is a
fundamental principle of quantum communication. As we are aware, optimal
broadcasting (OB) is the only method to broadcast noncommuting mixed states
approximately. In this paper, motivated by the probabilistic cloning of quantum
states proposed by Duan and Guo, we propose a new way for broadcasting
noncommuting mixed states—probabilistic broadcasting (PB), and we present
a sufficient condition for PB of mixed states. To a certain extent, we generalize
the probabilistic cloning theorem from pure states to mixed states, and in
particular, we generalize the non-broadcasting theorem, since the case that
commuting mixed states can be exactly broadcast can be thought of as a special
instance of PB where the success ratio is 1. Moreover, we discuss probabilistic
local broadcasting (PLB) of separable bipartite states.

PACS numbers: 03.67.−a, 03.65.Ud

1. Introduction

Quantum broadcasting [1] means that the marginal density operator is the same as the density
operator of the state to be broadcast. More specifically, Alice has an N-dimensional system
A, and the initial state is secretly chosen from the set {ρi | i = 1, 2} to be broadcast; Bob also
has an N-dimensional system B whose initial state is a blank state �. Suppose that the initial
state of the composite system AB is ρi ⊗ �. Then, the broadcasting problem is to investigate
whether there exists an operation ξ acting on the composite system AB such that the following
equation holds

ξ(ρi ⊗ �) = ρ̃i , i = 1, 2, (1)

where ρ̃i denotes a state of the composite system AB satisfying trA(ρ̃i) = trB(ρ̃i) = ρi , and
here trA and trB denote partial traces over the subsystems A and B, respectively. We can
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consider quantum cloning as a special case of broadcasting that ρ̃i = ρi ⊗ ρi in equation (1).
In this manner, if we have a machine to clone {ρi}, then we have a machine to broadcast {ρi}.
However, the contrary implication may not be true.

To investigate quantum broadcasting, we can consider two cases. One is that the states
to be broadcast are pure states. It is not difficult to find that the only way to broadcast a pure
state |ψi〉 is to put the two systems in the product state |ψi〉|ψi〉, that is quantum pure states
cloning.

For a detailed review on quantum cloning, we may refer to [2]. The unitarity and linearity
of quantum physics lead to some impossibilities—the no-cloning theorem [3–5] and the no-
deleting principle [6]. The linearity of quantum theory makes an unknown quantum state
unable to be perfectly copied [3, 4] and deleted [6], and two nonorthogonal states are not
allowed to be precisely cloned and deleted, as a result of the unitarity [5, 7, 8], that is, for
nonorthogonal pure states |ψ1〉 and |ψ2〉, no physical operation in quantum mechanics can
exactly achieve the transformation |ψi〉 → |ψi〉|ψi〉(i = 1, 2). Recently, Jozsa [9], Horodecki
et al [10] and Azuma et al [11] further clarified the no-cloning theorem and the no-deleting
principle from the viewpoint of conservation of quantum information. No-cloning theorem
has also been generalized to entangled states [12]. Remarkably, these restrictions provide a
valuable resource in quantum cryptography [13], because they forbid an eavesdropper to gain
information on the distributed secret key without producing errors.

We briefly recall some preliminaries regarding quantum cloning. In general, there are two
kinds of cloners. One is the universal quantum copying machine first introduced by Buz̆ek
and Hillery [14], and this kind of machines is deterministic and does not need any information
about the states to be cloned, so it is state independent. The other kind of cloners is state
dependent [15, 16], since it needs some information about the states to be cloned. Furthermore,
this kind of cloning machines may be divided into three fashions: the first one is probabilistic
cloner proposed first by Duan and Guo [17, 18], and then studied by Chefles and Barnett [19]
and Pati [20], that can clone linearly independent states with nonzero probabilities. The issue
that the supplementary information is added in Duan and Guo’s probabilistic cloning [17, 18]
and Pati’s novel cloning machine (NCM) [20] was investigated by Azuma et al [21] and Qiu
[22, 23]. The second one is deterministic cloner first investigated by Bruß et al [24] and then
by Chefles and Barnett [25]; the last one is hybrid cloner studied by Chefles and Barnett [19],
that combine deterministic cloner with probabilistic cloner.

Quantum broadcasting is a kind of more general cloning, and the states to be broadcast
can be mixed states. Quantum broadcasting is also more complicated than universal quantum
copying. Corresponding to the no-cloning theorem [3, 4], Barnum et al [1] presented the
no-broadcasting theorem and showed that noncommuting mixed states cannot be broadcast
determinately. Recently, the no-broadcasting theorem has drawn much attention in the
academic community. Chen et al [26] showed that there does not exist any universal quantum
cloning machine that can broadcast an arbitrary mixed qubit with a constant fidelity. Barnum
et al [27] developed the no-broadcasting theorem and presented a more general form of no-
broadcasting theorem. Kalev et al [28] presented a general proof for the no-broadcasting
theorem.

However, if the input copies are more than one, the no-broadcasting theorem may not
hold. Indeed, D’Ariano et al [29] investigated optimal universal broadcasting for mixed
states of qubits and showed that for four or more input copies, it is even possible to purify
the input states while broadcasting, and they called this phenomenon as superbroadcasting.
Fan et al [30] proposed a quantum broadcasting transformation that can broadcast ρi ⊗ ρi to
M(M � 2) copies, and they showed that the shrinking factor between the input and the output
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single qubits is the upper bound. In their another paper [31], the N to M(M � N) universal
quantum broadcasting of mixed states ρ⊗N

i was proposed for qubit systems.
So far, there is only one kind of approximate broadcasting, namely, the optimal broad-

casting (OB), which broadcasts noncommuting mixed states approximately. Corresponding
to the probabilistic cloning of nonorthogonal pure states, does there exist the second kind of
broadcasting—the probabilistic broadcasting for noncommuting mixed states? Furthermore,
what is the condition for mixed sates to be probabilistically broadcast? As an example, let
|c11〉 = |0〉, |c12〉 = |1〉, |c21〉 = |1〉+|2〉√

2
, |c22〉 = |0〉+|3〉√

2
, and

ρ1 = p11|c11〉〈c11| + p12|c12〉〈c12|, (2)

ρ2 = p21|c21〉〈c21| + p22|c22〉〈c22|. (3)

It is obvious that ρ1 and ρ2 are noncommuting. Thus, according to the no-broadcasting
theorem [1], they cannot be exactly broadcast. A natural question is whether they can be
probabilistically broadcast.

With a different fashion (but it is related to the standard broadcasting task), Piani et al
[32] investigated the local broadcasting of multipartite quantum correlations. They divided
the separable bipartite states into three fashions: general separable bipartite states, quantum-
classical states and classical–classical states, and showed that classical–classical states are
the only states that can be locally broadcast. Giovannetti and Holevo [33] presented a weaker
version of broadcasting to broadcast an unknown input state into two subsystems which
partially overlap, which was named as quantum shared broadcasting (QSB). They showed
that QSB strongly depends upon the overlap among the subsystems and analyzed the condition
for approximate shared broadcasting.

Another question is, besides classical–classical states, whether the other separable
multipartite states can be locally broadcast with a certain success probability. We will partially
address these issues in this paper.

In this paper, motivated by the probabilistic cloning of quantum states proposed by Duan
and Guo [17, 18], we address a probabilistic way for broadcasting of noncommuting mixed
states—probabilistic broadcasting, and we present a sufficient condition of PB for mixed
states. We generalize the no-broadcasting theorem [1] to the probabilistic setting. Therefore,
the case that commuting mixed states can be broadcast exactly may be thought of as a special
instance of PB in which the success ratio is 1. Moreover, we present probabilistic local
broadcasting (PLB) of separable bipartite states.

The remainder of the paper is organized as follows. In section 2, we review related
basic definitions and the probabilistic cloning theorem, and then introduce the protocol of
probabilistic broadcasting used in later sections. In section 3, we prove our main results
regarding probabilistic broadcasting of mixed states. In section 4, we discuss probabilistic
local broadcasting of separable bipartite states. Finally, in section 5, we summarize our
results, mention some potential of applications and address a number of related issues for
further consideration.

2. Preliminaries

First, let us review the definition of separable bipartite states and the notion of local broadcast
that will be used in section 4.

Definition 1. ([32]) A bipartite state ρAB is called as (i) separable if it can be written as
ρAB = ∑

i piσ
A
i ⊗σB

i , where {pi} is a probability distribution and each σX
i is a quantum state,
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and if non-separable, it is named as entangled; (ii) classical-quantum (CQ) if it can be written
as

∑
i pi |i〉〈i| ⊗ σB

i , where {|i〉} is an orthonormal set, {pi} is a probability distribution and
each σB

i is a quantum state; (iii) classical–classical (CC), if there are two orthonormal sets
{|i〉} and {|j 〉} such that ρ = ∑

ij pij |i〉〈i| ⊗ |j〉〈j |, with {pij } a joint probability distribution
for the indices (i, j).

Definition 2. ([32]) The bipartite state ρAB is locally broadcastable (LB) if there exist local
maps ξA : A → AA′, ξB : B → BB ′ such that σAA′BB ′ ≡ (ξA ⊗ ξB)(ρAB) satisfying
trAB(σAA′BB ′) = trA′B ′(σAA′BB ′) = ρ.

Then, considering the close relationship between probabilistic broadcasting and
probabilistic cloning, it is necessary to recall Duan and Guo’s probabilistic cloning theorem
[18].

Theorem 1. ([18]) There exists a cloning machine

U(|ψi〉|�〉|P 〉) = √
ri |ψi〉|ψi〉|P 〉 +

√
1 − ri

∣∣�(i)
abp

〉
, i = 1, 2, . . . , n, (4)

if and only if the matrix X − √
�Y

√
� is positive semidefinite, where U is a unitary operator,

|P 〉 is a normalized state, |�〉 is a blank state, |�(i)
abp〉 is a normalized state of the composite

system ABP such that
〈
P

∣∣�(i)
abp

〉 = 0(i = 1, 2, . . . , n),X = [〈ψi |ψj 〉], Y = [〈ψi |ψj 〉2], and
� = diag(r1, r2, . . . , rn) are n × n matrices.

Besides the form stated above, the probabilistic cloning theorem can also be equivalently
presented as the following form.

Theorem 2. ([18]) The state secretly chosen from the set {|ψi〉} can be probabilistically
cloned if and only if the states in the set {|ψi〉} are linearly independent.

Now, we consider probabilistic broadcasting of mixed states. We present the protocol as
following.

In our protocol, there are three players, Alice, Bob and Victor. Alice has system A whose
initial state, to be broadcast to Bob, is secretly chosen from the set {ρi}. Bob has system B
whose initial state is a blank state � used to receive the state ρi . Victor has system P whose
initial state is P used to probe whether broadcasting is successful or not. First, let the three
particles pass through a special unitary gate U, such that

U(ρi ⊗ � ⊗ P)U † = ri ρ̃i ⊗ P + (1 − ri)σ̃
(i)
abp, i = 1, 2, . . . , n, (5)

where σ̃
(i)
abp is a density operator of the composite system ABP such that trP

(
(I ⊗P)σ̃

(i)
abp

) = 0,
and trA(ρ̃i) = trB(ρ̃i) = ρi . After broadcasting, by measuring Victor’s system P with
projectors {P, I − P }, we can judge whether the broadcasting succeeds or not. Thus, ri is the
success ratio of probabilistically broadcasting ρi .

This PB protocol can be directly extended to any more subsystems. Now, based on the
protocol stated above, we are ready to investigate the problem of probabilistic broadcasting of
mixed states.

3. Probabilistic broadcasting of mixed states

Throughout this paper, we consider the states in the set {ρi | i = 1, 2} as the original mixed
states to be broadcast. In the remainder of the paper, we simply write it as {ρi}. We define that
� ≡ |�〉〈�| and P ≡ |P 〉〈P |, where |�〉 is a standard quantum state, and |P 〉 is the probe
state. ri is the success ratio of probabilistic broadcasting of ρi , and χi denotes the rank of ρi .
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Motivated by the probabilistic cloning of pure states proposed by Duan and Guo [17, 18],
if we clone every item |cik〉〈cik| of the spectral decomposition of ρi with the same success
ratio ri , what will happen? Indeed, doing this means that we can broadcast ρi with the success
ratio ri . If there exist the same items in the spectral decompositions of ρ1 and ρ2, then the
success ratios of broadcasting ρ1 and ρ2 should be equal.

Here, we should pay attention to the two different representations, S = {|cik〉|i = 1, 2;
k = 1, 2, . . . , χi} and |cik〉, (i = 1, 2; k = 1, 2, . . . , χi). The front representation is a set, and
we often simply write the front one as {|cik〉} in case no confusion results. However, the latter
one is not a set, which may include the same item. For example, if |c11〉 = |0〉, |c12〉 = |2〉,
|c21〉 = |0〉+|1〉√

2
, |c22〉 = |0〉, then the front representation {|cik〉|i = 1, 2; k = 1, 2} is equal to

the set {|0〉, |2〉, |0〉+|1〉√
2

} which has three elements. To describe all the four states, we should
use the latter representation denoted them as |cik〉, (i = 1, 2; k = 1, 2).

Theorem 3. If there exists spectral decomposition of ρi ,

ρi =
∑

k

pik|cik〉〈cik|, i = 1, 2, (6)

satisfying that the states in the set of S = {|cik〉} are linearly independent, then {ρi} can be
probabilistically broadcast by the machine described by

U(ρi ⊗ � ⊗ P)U † = ri ρ̃i ⊗ P + (1 − ri)σ̃
(i)
abp, i = 1, 2, (7)

where ri is the success ratio of probabilistic broadcasting of ρi,� is the density operator of a
standard quantum state, P is the density operator of the probe state, σ̃

(i)
abp is a density operator

of the composite system ABP such that trP
(
(I ⊗ P)σ̃

(i)
abp

) = 0, and trA(ρ̃i) = trB(ρ̃i) = ρi .

Proof. Let S1 = {|c1k〉 | k = 1, 2, . . . , χ1}, S2 = {|c2k〉 | k = 1, 2, . . . , χ2}. Then
S = S1

⋃
S2. We consider two cases to prove this theorem:

(1) If |S| = |S1| + |S2|, then, since the states in the set S = {|cik〉} are linearly
independent, the matrices X = [〈cik|cjt 〉] and Y = [〈cik|cjt 〉2] are positive definite.
Let � = diag(r1, r1, . . . , ri , ri , . . . , rm, rm). For small enough ri > 0, the matrix
X −√

�Y
√

� is also positive definite. According to theorem 1, we know that there exists
a machine to probabilistically clone the states in the sets S1 and S2 with probabilities r1

and r2, respectively, as follows:

U(|cik〉|�〉|P 〉) = √
ri |cik〉|cik〉|P 〉 +

√
1 − ri

∣∣�(ik)
abp

〉
,

i = 1, 2; k = 1, 2, . . . , χi, (8)

where U is a unitary operator, |�〉 is a blank state,
∣∣�(ik)

abp

〉
is a normalized state of the

composite system ABP such that
〈
�

(ik)
abp

∣∣�(it)
abp

〉 = 0 and
〈
P

∣∣�(ik)
abp

〉 = 0.
As a result, we have

U(|cik〉|�〉|P 〉〈cik|〈�|〈P |)U † = ri |cik〉|cik〉|P 〉〈cik|〈cik|〈P | + (1 − ri)η
(ik)
abp, (9)

where we define η
(ik)
abp as

η
(ik)
abp ≡ 1

1 − ri

(√
ri(1 − ri)|cik〉|cik〉|P 〉〈�(ik)

abp

∣∣
+
√

ri(1 − ri)
∣∣�(ik)

abp

〉〈cik|〈cik|〈P
∣∣ + (1 − ri)|�(ik)

abp

〉〈
�

(ik)
abp

∣∣), (10)

such that trP
(
(I ⊗ P)η

(ik)
abp

) = 0.
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Then, we have

U(ρi ⊗ � ⊗ P)U † =
∑

k

pikU(|cik〉|�〉|P 〉〈cik|〈�|〈P |)U † (11)

=
∑

k

pik

(
ri |cik〉|cik〉|P 〉〈cik|〈cik|〈P | + (1 − ri)η

(ik)
abp

)
(12)

= ri

∑
k

pik(|cik〉|cik〉|P 〉〈cik|〈cik|〈P |) + (1 − ri)
∑

k

pikη
(ik)
abp (13)

= ri ρ̃i ⊗ P + (1 − ri)σ̃
(i)
abp, (14)

where ρ̃i = ∑
k pik|cik〉|cik〉〈cik|〈cik| satisfying trA(ρ̃i) = trB(ρ̃i) = ρi , and

σ̃
(i)
abp =

∑
k

pikη
(ik)
abp, (15)

satisfying that trP
(
(I⊗P)σ̃

(i)
abp

) = trP
(
(I⊗P)

∑
k pikη

(ik)
abp

) = ∑
k pik trP

(
(I⊗P)η

(ik)
abp

) =
0. After U transformation, Victor plays a measurement using {P, I−P }. Then, the state of
the composite system AB will be ρ̃i with success probability ri , and trP

(
I ⊗ (I −P)σ̃

(i)
abp

)
with failure probability 1 − ri . So, we have a machine (7) to broadcast the mixed states
ρ1 and ρ2 with probabilities r1 and r2, respectively.

(2) If |S| < |S1| + |S2|, then, because the states in the set S = {|cik〉} are linearly
independent, the matrixes X = [〈cik|cjt 〉] and Y = [〈cik|cjt 〉2] are positive definite.
Let � = diag(r, r, . . . , r). For small enough r > 0, the matrix X − √

�Y
√

� is also
positive definite. According to theorem 1, there exists a machine to probabilistically clone
the states in the set S with the same probability r. Thus, we have a cloning machine to
probabilistically clone the states in the sets S1 and S2 with the same probability r. The
cloning machine is described as follows:

U ′(|cik〉|�〉|P 〉) = √
r|cik〉|cik〉|P 〉 +

√
1 − r

∣∣� ′(ik)
abp

〉
,

i = 1, 2; k = 1, 2, . . . , χi, (16)

where U ′ is a unitary operator, |�〉 is a blank state,
∣∣� ′(ik)

abp

〉
is a normalized state of the

composite system ABP such that 〈P ∣∣� ′(ik)
abp

〉 = 0.
This case can be thought of as a special case of the previous one, where r1 = r2 = r .
Similar to the preceding case, by calculation, we also have a machine (7) to broadcast the
mixed states ρ1 and ρ2 with probabilities r1 and r2, respectively, where r1 = r2 = r . �

Based on the above result, we can immediately answer the question that we present in
section 1. Let |c11〉 = |0〉, |c12〉 = |1〉, |c21〉 = |1〉+|2〉√

2
, |c22〉 = |0〉+|3〉√

2
and

ρ1 = p11|c11〉〈c11| + p12|c12〉〈c12|, (17)

ρ2 = p21|c21〉〈c21| + p22|c22〉〈c22|. (18)

Because the above two equations are the spectral decompositions of ρ1 and ρ2, respectively, and
{|cik〉} are linearly independent, we can conclude that {ρi} can be probabilistically broadcast.

Remark. If the dimension of the eigenspace corresponding to one eigenvalue is greater than
one, then the spectral decomposition of ρi may have many representation forms, namely,
{|cik〉} may be not exclusive. In the spectral decompositions of ρ1 and ρ2, if there exists
|cik〉 = ∑

t βt |cjt 〉, where
∑

t |βt |2 = 1 and |cjt 〉 are in the same eigenspace corresponding to

6
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a eigenvalue of ρj , then we can consider another spectral decomposition of ρj in which there
is the same item |cik〉. For example, suppose that

ρ1 = 1

2

|0〉 + |1〉√
2

〈0| + 〈1|√
2

+
1

2

|0〉 − |1〉√
2

〈0| − 〈1|√
2

, (19)

ρ2 = p21|0〉〈0| + p22
|1〉 + |2〉√

2

〈1| + 〈2|√
2

. (20)

Because |0〉+|1〉√
2

,
|0〉−|1〉√

2
, |0〉, |1〉+|2〉√

2
are linearly dependent, it seems that we cannot judge whether

ρ1 and ρ2 can be probabilistically broadcast using our results. However, if we consider another
spectral decomposition of ρ1: ρ1 = 1

2 |0〉〈0| + 1
2 |1〉〈1|, then we can see that there exists the

same item |0〉 in the spectral decompositions of ρ1 and ρ2. We delete one of them, then
|0〉, |1〉, |1〉+|2〉√

2
are linearly independent. By means of theorem 3, we can conclude that ρ1 and

ρ2 can be probabilistically broadcast.

After we have known that a set of mixed states can be probabilistically broadcast, a natural
question is what is the success ratio of PB of ρi . To answer the question, we have the following
result.

Suppose that there exist spectral decompositions of ρi such as ρi = ∑
k pik|cik〉〈cik|,

i = 1, 2. Let S = {|cik〉 | i = 1, 2; k = 1, 2, . . . , χi}, S1 = {|c1k〉 | k = 1, 2, . . . , χ1} and
S2 = {|c2k〉|k = 1, 2, . . . , χ2}. Now, we define X′(1), X′(2) and �′ as follows. Let

X′(1) ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈c11|c11〉 . . . 0 〈c11|c2t1〉 · · · 〈c11|c2t|S|−|S1 | 〉
· · · . . . · · · · · · . . . · · ·
0 · · · 〈c1|S1||c1|S1|〉 〈c1|S1||c2t1〉 · · · 〈c1|S1||c2t|S|−|S1 | 〉

〈c2t1 |c11〉 · · · 〈c2t1 |c1|S1|〉 〈c2t1 |c2t1〉 · · · 0

· · · . . . · · · · · · . . . · · ·
〈c2t|S|−|S1 | |c11〉 · · · 〈c2t|S|−|S1 | |c1|S1|〉 0 · · · 〈c2t|S|−|S1 | |c2t|S|−|S1 | 〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

X′(2) ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈c11|c11〉2 · · · 0 〈c11|c2t1〉2 · · · 〈c11|c2t|S|−|S1 | 〉2

· · · . . . · · · · · · . . . · · ·
0 · · · 〈c1|S1||c1|S1|〉2 〈c1|S1||c2t1〉2 · · · 〈c1|S1||c2t|S|−|S1 | 〉2

〈c2t1 |c11〉2 · · · 〈c2t1 |c1|S1|〉2 〈c2t1 |c2t1〉2 · · · 0

· · · . . . · · · · · · . . . · · ·
〈c2t|S|−|S1 | |c11〉2 · · · 〈c2t|S|−|S1 | |c1|S1|〉2 0 · · · 〈c2t|S|−|S1 | |c2t|S|−|S1 | 〉2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

be two |S| × |S| positive definite matrixes, where |c1k〉 ∈ S1(k = 1, 2, . . . , |S1|), |c2tj 〉 ∈
S2 − S1(j = 1, 2, . . . , |S| − |S1|). �′ is a |S| × |S| diagonal efficiency matrix defined by
�′ ≡ diag(R1, R2), where R1 = diag(r1, r1, . . . , r1) is a |S1| × |S1| diagonal positive definite
matrix, and R2 = diag(r2, r2, . . . , r2) is a (|S| − |S1|) × (|S| − |S1|) diagonal positive definite
matrix. If |S| < |S1| + |S2|, namely, there exist the same items in the sets S1 and S2, then we
let r1 = r2.

Theorem 4. If the matrix X′(1) − √
�′X′(2)

√
�′ is positive semidefinite, then {ρi} can be

probabilistically broadcast by the machine described by

U(ρi ⊗ � ⊗ P)U † = ri ρ̃i ⊗ P + (1 − ri)σ̃
(i)
abp, i = 1, 2, (21)

7
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where ri is the success ratio of probabilistic broadcasting of ρi,� is the density operator of a
standard quantum state, P is the density operator of the probe state, σ̃

(i)
abp is a density operator

of the composite system ABP such that trP
(
(I ⊗ P)σ̃

(i)
abp

) = 0, and trA(ρ̃i) = trB(ρ̃i) = ρi .

Proof. According to theorem 1, if the matrix X′(1) − √
�′X′(2)

√
�′ is positive semidefinite,

then there exists a cloning machine to clone the states |cik〉 in the set S. The machine is
described as follows:

U(|cik〉|�〉|P 〉) = √
ri |cik〉|cik〉|P 〉 +

√
1 − ri

∣∣�(ik)
abp

〉
,

|cik〉 ∈ {|cik〉|i = 1, 2; k = 1, 2, . . . , χi}, (22)

where U is a unitary operator, |�〉 is a blank state,
∣∣�(ik)

abp

〉
is a normalized state of the composite

system ABP such that
〈
P

∣∣�(ik)
abp

〉 = 0.
According to theorem 2, we know that the states in the set S = {|cik〉} are linearly

independent. Therefore, according to theorem 3, we have the conclusion that {ρi} can be
probabilistically broadcast by the machine described by

U(ρi ⊗ � ⊗ P)U † = ri ρ̃i ⊗ P + (1 − ri)σ̃
(i)
abp, i = 1, 2, (23)

where ri is the success ratio of probabilistic broadcasting of ρi,� is the density operator of a
standard quantum state, P is the density operator of the probe state, σ̃ (i)

abp is a density operator of

the composite system ABP such that trP
(
(I ⊗ P)σ̃

(i)
abp

) = 0, and trA(ρ̃i) = trB(ρ̃i) = ρi . �

According to the results presented by Barnum et al [1], commuting mixed states can be
determinately broadcasted. If ρ1 and ρ2 are commuting, there exists an orthonormal basis
{|ci〉} such that both ρ1 and ρ2 are diagonal with respect to that basis. So, we can determinately
clone every item |ci〉〈ci |. Then, we can precisely broadcast ρ1 and ρ2. This case can be thought
of as a special case of probabilistic broadcasting, where the success probability is 1.

Now, let us take two simple examples to understand our results for PB of mixed states.

Example 1. As we present in section 1, let |c11〉 = |0〉, |c12〉 = |1〉, |c21〉 = |1〉+|2〉√
2

, |c22〉 =
|0〉+|3〉√

2
, and

ρ1 = p11|c11〉〈c11| + p12|c12〉〈c12|, (24)

ρ2 = p21|c21〉〈c21| + p22|c22〉〈c22|. (25)

The states in the set {|cik〉} are linearly independent, and thus ρ1 and ρ2 can be probabilistically
broadcast. There is not the same item in the spectral decompositions of ρ1 and ρ2. We suppose
that the success probabilities of PB of ρ1 and ρ2 are r1 and r2, respectively. According to our
results, we have

X′(1) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 1√
2

0 1 1√
2

0

0 1√
2

1 0

1√
2

0 0 1

⎞
⎟⎟⎟⎟⎟⎠

(26)

and

√
�′X′(2)

√
�′ =

⎛
⎜⎜⎜⎜⎝

r1 0 0 1
2

√
r1r2

0 r1
1
2

√
r1r2 0

0 1
2

√
r1r2 r2 0

1
2

√
r1r2 0 0 r2

⎞
⎟⎟⎟⎟⎠ . (27)

8
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By calculating, X′(1) − √
�′X′(2)

√
�′ is positive semidefinite if and only if (1 − r1)(1 −

r2) − (
1√
2

− 1
2

√
r1r2

)2 � 0. r1 = r2 = 2 − √
2 satisfies the inequality (1 − r1)(1 − r2) −(

1√
2

− 1
2

√
r1r2

)2 � 0. Therefore, we can probabilistically broadcast {ρ1, ρ2} with success

ratio r1 = r2 = 2 − √
2 using our protocol.

Example 2. Suppose that we have |c11〉 = |0〉, |c12〉 = |2〉, |c21〉 = |0〉+|1〉√
2

, |c22〉 = |0〉−|1〉√
2

|c23〉 = |2〉+|3〉√
2

, and

ρ1 = p11|c11〉〈c11| + p12|c12〉〈c12|, (28)

ρ2 = p|c21〉〈c21| + p|c22〉〈c22| + (1 − 2p)|c23〉〈c23|. (29)

The states in the set {|cik〉} are linearly dependent. However, because |c11〉 = |c21〉 + |c22〉,
furthermore, |c21〉 and |c22〉 are the states in the same eigenspace corresponding to the
eigenvalue p, we can consider another decompositions of ρ1 and ρ2 such as

ρ1 = p11|0〉〈0| + p12|2〉〈2|, (30)

ρ2 = p|0〉〈0| + p|1〉〈1| + (1 − 2p)
|2〉 + |3〉√

2

〈2| + 〈3|√
2

. (31)

Then the mixed states ρ1, ρ2 can be probabilistically broadcasted, since |0〉, |1〉, |2〉 and
|2〉+|3〉√

2
are linearly independent. According to our results, we have

X′(1) =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 1√

2

0 0 1√
2

1

⎞
⎟⎟⎟⎠ . (32)

There exists the same item |0〉 in the spectral decompositions of ρ1 and ρ2, so the success
probabilities of broadcasting ρ1 and ρ2 are the same. Assume that the success ratio is r, we
have

√
�′X′(2)

√
�′ = r[〈ci |cj 〉2] =

⎛
⎜⎜⎜⎝

r 0 0 0
0 r 0 0
0 0 r 1

2 r

0 0 1
2 r r

⎞
⎟⎟⎟⎠ . (33)

Then we have

X′(1) −
√

�′X′(2)
√

�′ =

⎛
⎜⎜⎜⎝

1 − r 0 0 0
0 1 − r 0 0
0 0 1 − r 1√

2
− 1

2 r

0 0 1√
2

− 1
2 r 1 − r

⎞
⎟⎟⎟⎠ . (34)

X′(1)−√
�′X′(2)

√
�′ is positive semidefinite if and only if (1−r)2

(
1− 1√

2
− 1

2 r
)(

1+ 1√
2
− 3

2 r
)

�
0. Thus, we get r � 2 − √

2. That is to say, we can broadcast {ρ1, ρ2} with success ratio no
more than 2 − √

2 using our PB protocol.

9
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4. Probabilistic local broadcasting of separable bipartite states

Piani et al [32] investigated local broadcasting of multipartite quantum correlations and
showed that classical–classical are the only states that can be locally broadcast. Applying
the results of previous sections, some general separable bipartite quantum states can also be
LB with a certain success probability.

In the remainder of this paper, we consider the separable bipartite state ρAB = ∑
i σ

A
i ⊗σB

i

as the original mixed state to be broadcast. We define that �A′B ′ ≡ �A′ ⊗ �B ′ =
|�A′ 〉〈�A′ | ⊗ |�B ′ 〉〈�B ′ | and P AB ≡ P A ⊗ P B = |P A〉〈P A| ⊗ |P B〉〈P B |, where |�X〉
is a standard quantum state of system X, and |P X〉 is the probe state of system X,X is chosen
from A or B. rX is the success ratio of probabilistic broadcasting of σX

i .
We present the protocol of probabilistic local broadcasting as following. There are two

players, Alice and Bob. Alice has three systems A,A′ and P A. Bob has three systems B,B ′

and P B . The initial state of the composite system AB, to be broadcast to the composite system
A′B ′, is secretly chosen from the set {σA

i ⊗σB
i } with a probability distribution {pi}. The initial

state of the composite system A′B ′ is a blank state �A′B ′
. The composite system P AB whose

initial state is P AB used to probe whether broadcasting is successful or not. Alice and Bob
can locally broadcast systems A and B with success probabilities rA and rB , respectively.
If both of them are successful, then the work is successful, otherwise, the work is failure.
Specifically, let Alice’s and Bob’s systems pass through two special local unitary gates UA

and UB , respectively, such that

(UA ⊗ UB)(ρAB ⊗ �A′B ′ ⊗ P AB)
(
U

†
A ⊗ U

†
B

) = rρ̃AA′BB ′ ⊗ P AB + (1 − r)�̃AA′BB ′P AB

(35)

where ρ̃AA′BB ′ ⊗ P AB is a density operator of the composite system AA′BB ′P AB such
that trP AB ((I ⊗ P AB)�̃AA′BB ′P AB

) = 0 and trAB(ρ̃AA′BB ′) = trA′B ′(ρ̃AA′BB ′) = ρi . After
local broadcasting, by measuring systems P A and P B with projectors {P A, I − P A} and
{P B, I − P B}, respectively, we can judge whether the broadcasting is successful or not.

Theorem 5. Suppose ρAB = ∑
i piσ

A
i ⊗ σB

i . If σX
i is the convex hull of linearly independent

pure states
{∣∣ψX

ik

〉〈
ψX

ik

∣∣}, that is to say σX
i = ∑

k pX
ik

∣∣ψX
ik

〉〈
ψX

ik

∣∣, then the bipartite state ρAB

can be locally broadcast with a certain probability.

Proof. According to theorem 1, we know that
{∣∣ψX

ik

〉}
can be probabilistically cloned with the

same success ratio rX by a machine

UX

(∣∣ψX
ik

〉|�X′ 〉|P X〉) = √
rX

∣∣ψX
ik

〉∣∣ψX′
ik

〉|P X〉 +
√

1 − rX

∣∣�XX′P X

ik

〉
, (36)

where UX is a unitary operator, |�X′ 〉 is a blank state,
∣∣�XX′P X

ik

〉
is a normalized state of the

composite system XX′P X such that
〈
P X|�XX′P X

ik

〉 = 0.
Therefore, we have

UX

(∣∣ψX
ik

〉|�X′ 〉|P X〉〈ψX
ik

∣∣〈�X′ |〈P X|)U †
X

= rX

∣∣ψX
ik

〉∣∣ψX′
ik

〉|P X〉〈ψX
ik

∣∣〈ψX′
ik

∣∣〈P X| + (1 − rX)ηXX′P X

ik , (37)

where we define ηXX′P X

k as

ηXX′P X

ik ≡ 1

1 − rX

(√
rX(1 − rX)

∣∣ψX
ik

〉∣∣ψX′
ik

〉|P X〉〈�XX′P X

ik

∣∣
+

√
rX(1 − rX)

∣∣�XX′P X

ik

〉〈
ψX

ik

∣∣〈ψX′
ik

∣∣〈P X| + (1 − rX)
∣∣�XX′P X

ik

〉〈
�XX′P X

ik

∣∣), (38)

such that trP X((I ⊗ P X)ηXX′P X

ik ) = 0.

10
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Then, we have

UX

(
σX

i ⊗ �X′ ⊗ P X
)
U

†
X = rXσ̃XX′

i ⊗ P X + (1 − rX)π̃XX′P X

i , (39)

where rX is the success ratio of probabilistic broadcasting of σX
i ,

σ̃ XX′
i =

∑
k

pX
ik

∣∣ψX
ik

〉∣∣ψX′
ik

〉〈
ψX

ik

∣∣〈ψX′
ik

∣∣ (40)

such that trX
(
σ̃ XX′

i

) = trX′
(
σ̃ XX′

i

) = σX
i , and

π̃XX′P X

i =
∑

k

pX
ikη

XX′P X

ik (41)

satisfying trP X

(
(I ⊗ P X)π̃XX′P X

i

) = 0.
Thus, there exist UA and UB such that

(UA ⊗ UB)(ρAB ⊗ �A′B ′ ⊗ P AB)
(
U

†
A ⊗ U

†
B

)
=

∑
i

pi

[
UA

(
σA

i ⊗ �A′ ⊗ P A
)
U

†
A

] ⊗ [
UB

(
σB

i ⊗ �B ′ ⊗ P B
)
U

†
B

]
(42)

=
∑

i

pi

[
rAσ̃i

AA′ ⊗ P A + (1 − rA)π̃AA′P A

i

]

⊗ [
rBσ̃i

BB ′ ⊗ P B + (1 − rB)π̃BB ′P B

i

]
(43)

= rρ̃AA′BB ′ ⊗ P AB + (1 − r)�̃AA′BB ′P AB

, (44)

where r = rArB,

�̃AA′BB ′P AB = 1

1 − rArB

∑
i

pi

[
rA(1 − rB)σ̃i

AA′ ⊗ P A ⊗ π̃BB ′P B

i

+ (1 − rA)rBπ̃AA′P A

i ⊗ σ̃i
BB ′ ⊗ P B + (1 − rA)(1 − rB)π̃AA′P A

i ⊗ π̃BB ′P B

i

]
,

(45)

such that trP AB ((I ⊗ P AB)�̃AA′BB ′P AB

) = 0, and ρ̃AA′BB ′ = ∑
i pi σ̃i

AA′ ⊗ σ̃i
BB ′

satisfying
trAB(ρ̃AA′BB ′) = trA′B ′(ρ̃AA′BB ′) = ρAB .

After broadcasting, by measuring systems P A and P B with projectors {P A, I − P A}
and {P B, I − P B}, respectively, we can judge whether the broadcasting is successful or not.
Consequently, ρAB can be locally broadcast with a certain probability r. �

Classical–classical can be considered as a special case of separable bipartite states, where
σX

i is the convex hull of orthogonal states {|i〉〈i|}. Based on our result, it can be LB with
success probability 1. Moreover, our result can be directly extended to separable multipartite
states. As a consequence, to a certain extent, we generalize the no-local-broadcasting theorem
for quantum correlations presented by Piani et al [32].

5. Concluding remarks

It is well known that the non-broadcasting theorem is a fundamental principle of quantum
communication. As we are aware, OB is the only one method to broadcast noncommuting
mixed states approximately.

In this paper, we have proposed a new manner for broadcasting noncommuting mixed
states—PB. The initial state of the composite system ABP is ρi ⊗ � ⊗ P , and then let the
three particles pass through a special unitary gate U, such that

U(ρi ⊗ � ⊗ P)U † = ri ρ̃i ⊗ P + (1 − ri)σ̃
(i)
abp, i = 1, 2, . . . , n, (46)
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where σ̃
(i)
abp is a density operator of the composite system ABP such that trP ((I ⊗P)σ̃

(i)
abp) = 0,

and trA(ρ̃i) = trB(ρ̃i) = ρi . After broadcasting, by measuring Victor’s system P using
projectors {P, I − P }, we can judge whether the broadcasting is successful or not. As a
result, we will get the precise density operator ρi in each subsystem with success probability
ri . Furthermore, this PB protocol can be directly extended to arbitrarily more subsystems.

Besides this, we have proposed a sufficient condition for PB of mixed states. If
ρi = ∑

k pik|cik〉〈cik|(i = 1, 2) and the states in the set {|cik〉} are linearly independent,
{ρi} can be probabilistically broadcast. According to our conclusion, the case that commuting
mixed states can be broadcast exactly can be thought of a special instance of PB where the
success ratio is 1. Moreover, we have introduced PLB of separable bipartite states, and
presented a sufficient condition for PLB of separable bipartite states.

PB may get a precise density operator in each separate system with a certain probability.
We hope that our results would provide some useful ideas in preserving important quantum
information, parallel storage of quantum information in a quantum computer, and quantum
cryptography.

An interesting problem is what is the sufficient and necessary condition for PB, and another
nature problem is what is the maximum success ratio of PB of mixed states. Moreover, the
probabilistic cloning devices for mixed states are still worthy of further consideration. We
would like to explore these questions in the future.
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